Welcome Your IET account
Hand holding creativity illustration electronic circuit brain inside lightbulb. It is artificial intelligence and AI technology

AI that functions like human brain could improve learning

Image credit: Dilok Klaisataporn/Dreamstime

Neuroscientists have proposed that AI may function more like the human brain when designed to use a much faster technique for recognising new objects.

Professor Maximilian Riesenhuber, a neuroscientist at Georgetown University Medical Center and Joshua Rule, a postdoctoral scholar at the University of California-Berkeley, have designed a model that is capable of mirroring human visual learning. They explained in a journal how this new approach vastly improves the ability of neural networks to learn new visual concepts.

“Our model provides a biologically plausible way for artificial neural networks to learn new visual concepts from a small number of examples,” said Riesenhuber. “We can get computers to learn much better from few examples by leveraging prior learning in a way that we think mirrors what the brain is doing.”

According to Riesenhuber, humans can quickly and accurately learn new visual concepts from sparse data ­– sometimes just a single example. Even three- to four-month-old babies can easily learn to recognise zebras and distinguish them from other animals. But computers typically need to “see” many examples of the same object to know what it is, he said. 

Riesenhuber stated, however, that the big change needed was in designing software to identify relationships between entire visual categories, instead of trying the more standard approach of identifying an object using only low-level and intermediate information, such as shape and colour. 

“The computational power of the brain’s hierarchy lies in the potential to simplify learning by leveraging previously learned representations from a databank, as it were, full of concepts about objects,” he said. 

Riesenhuber and Rule found that artificial neural networks which represent objects in terms of previously learned patterns learned to recognise new objects significantly faster.

Rule explained: “Rather than learn high-level concepts in terms of low-level visual features, our approach explains them in terms of other high-level concepts. It is like saying that a platypus looks a bit like a duck, a beaver, and a sea otter.”

The brain architecture underlying human visual concept learning builds on the neural networks involved in object recognition. The anterior temporal lobe of the brain is thought to contain abstract concept representations that go beyond shape. These complex neural hierarchies for visual recognition allow humans to learn new tasks and leverage prior learning.

“By reusing these concepts, you can more easily learn new concepts, new meaning, such as the fact that a zebra is simply a horse of a different stripe,” Riesenhuber said. 

Despite advances in AI, the human visual system is still the gold standard in terms of ability to generalise from a few examples, robustly deal with image variations, and comprehend scenes, the scientists explained. 

“Our findings not only suggest techniques that could help computers learn more quickly and efficiently, but they can also lead to improved neuroscience experiments aimed at understanding how people learn so quickly, which is not yet well understood,” Riesenhuber concluded.

Sign up to the E&T News e-mail to get great stories like this delivered to your inbox every day.

Recent articles

Info Message

We use cookies to give you the best online experience. Please let us know if you agree to all of these cookies.


Learn more about IET cookies and how to control them