Welcome Your IET account
Tutankahmun's death mask
Comment

Additive manufacturing can give historic treasures a new lease of life

Image credit: Dreamstime

Museums of the future could be filled with 3D-printed replicas of precious artefacts rather than the fragile real thing.

George Santayana once said that “those who cannot remember the past are condemned to repeat it.” History, as Santayana would see it, allows us to understand why we live the way we do – and why it varies across the globe. Displays of historical treasures from different periods of time provide us with an even deeper understanding.

While displaying these invaluable items may be a wonderful opportunity to cultivate knowledge, there have been numerous examples of ancient artefacts being destroyed or damaged. For example, the funeral mask of Tutankhamun, which was discovered in 1922, was damaged in 2014 by a worker at the museum where it was on display. Curators glued the broken beard back onto the mask, resulting in further – and more noticeable – damage.

Of course, it is not only human error that results in damaged artefacts. In fact, many items and even monuments are also lost as a result of natural disasters or accidents, such as the fire that occurred at the National Museum of Brazil in 2018. The incident resulted in the museum losing 90 per cent of its pieces.

You may wonder why, with today’s advanced technological capabilities, we can’t recreate these artefacts. With additive manufacturing (AM) techniques rapidly advancing, 3D-capture technology has made it possible for design engineers to create and archive some of the world’s most iconic treasures.

AM can be defined as the process by which simple or complex 3D objects are rendered from materials using a computer-generated design. The newest wave of 3D printing makes it possible to reconstruct ancient artefacts from photographs and even video footage of the item.

The technology works by processing photos, aligning them in a similar way to how our eyes look at an object, so that it can detect depth and identify the main points of the object. From this, the technology can create a 3D model or mesh that matches the texture of the original piece.

To create a truly realistic and long lasting representation of an artefact, it needs to be recreated with materials that can effectively withstand the test of time. 3D printing can now be applied to a wide variety of materials including polymers, composites, ceramics and metals.

Until recently, the only polymers that could be used in AM were acrylonitrile butadiene styrene and nylon. Today the range includes poly-methyl methacrylate, thermoplastic elastomers and wood filaments, which combine a PLA base material with cork, wood dust and other derivatives.

The use of metals in 3D printing has also increased as a result of lightweight structural metals, such as titanium and aluminium, becoming viable options. Metals like this can be directly printed using various techniques such as powder sintering or melting.

When sourcing materials, many engineers may find they need a composition that can be adjusted to have different mechanical properties. Services like Matmatch allow developers and engineers to refine their search and choose other appropriate materials. For 3D printing, copper and nickel filaments are other alternative materials that can be used.

There are already several projects commissioned to restore lost artefacts, and as the scope for materials widens even further, we expect that in the future most museums will be filled with exquisite replicas of historical treasures instead of the real objects.

The applications that use additive manufacturing are considerably diverse allowing developers and engineers to recreate a wide range of intricate and heavily detailed structures or models like those displayed in museums. AM not only widens the amount of knowledge we are able to capture in each museum, but it can also protect timeless pieces like Tutankhamen’s mask from irreversible harm.

Ben Smye is head of growth at materials search engine Matmatch.

Sign up to the E&T News e-mail to get great stories like this delivered to your inbox every day.

Recent articles

Info Message

We use cookies to give you the best online experience. Please let us know if you agree to all of these cookies.


Learn more about IET cookies and how to control them