Next-gen fitness band could spot health problems using enzyme detector

Newly developed sensors could be added to fitness wristbands in order to detect underlying health problems through non-invasive testing of bodily fluids.

A team at the King Abdullah University Of Science & Technology (KAUST) have created a stretchy patch that can analyse sweat for critical biomarkers.

Human perspiration contains trace amounts of organic molecules that can act as measurable health indicators—glucose fluctuations, for example, may point to blood sugar problems, while high levels of lactic acid could signal oxygen deficiencies.

To detect these molecules, flexible prototypes have been developed that sit on the skin and direct sweat toward special enzyme-coated electrodes. The specific nature of enzyme-substrate binding enables these sensors to electrically detect very low concentrations of target compounds.

One obstacle with enzyme biosensors is that they typically have relatively short lifetimes.

“Even though human skin is quite soft, it can delaminate the enzyme layer right off the biosensor,” said Yongjiu Lei, a Ph.D. student at KAUST.

The new wearable system can handle the rigors of skin contact and deliver improved biomarker detection.

Their device runs on a thin, flat ceramic known as MXene that resembles graphene but contains a mixture of carbon and titanium atoms. The metallic conductivity and low toxicity of this 2D material make it an ideal platform for enzyme sensors, according to recent studies.

The team attached tiny dye nanoparticles to MXene flakes to boost its sensitivity to hydrogen peroxide, the main by-product of enzyme-catalyzed reactions in sweat.

Then, they encapsulated the flakes in mechanically tough carbon nanotube fibres and transferred the composite onto a membrane designed to draw sweat through without pooling. A final coating of glucose or lactose-oxidase enzymes completed the electrode assembly.

The new electrodes could be repeatedly swapped in or out of a stretchy polymer patch that both absorbs sweat and transmits the measured signals of hydrogen peroxide to an external source, such as a smartphone.

When the team placed the biosensor into a wristband worn by volunteers riding stationary bicycles, they saw lactose concentrations in sweat rise and fall in correlation with workout intensities. Changes in glucose levels could also be tracked as accurately in sweat as it is in blood.

“We are working with KAUST and international collaborators under the umbrella of the Sensors Initiative to integrate tiny electrical generators into the patch,” said Husam Alshareef, who led the project. “This will enable the patch to create its own power for personalized health monitoring.”


Sign up to the E&T News e-mail to get great stories like this delivered to your inbox every day.

Recent articles