Welcome Your IET account
mit robot

Self-powered, cell-sized robots can monitor their surroundings

Image credit: MIT

Tiny robots the size of a human egg cell that can sense their environment, store data, and even carry out computational tasks have been developed by MIT researchers, who say future devices could monitor pipelines or even the digestive tract.

The devices consist of tiny electronic circuits made of two-dimensional materials that piggyback on minuscule particles called colloids.

Colloids, which are insoluble particles or molecules that are anywhere from a billionth to a millionth of a metre across (1-1000nm), are so small they can stay suspended indefinitely in a liquid or even in air.

By coupling these tiny objects to complex circuitry, the researchers hope to lay the groundwork for devices that could be dispersed to carry out diagnostic journeys through anything from the human digestive system to oil and gas pipelines, or perhaps to waft through air to measure compounds inside a chemical processor or refinery.

“We wanted to figure out methods to graft complete, intact electronic circuits onto colloidal particles,” said professor Michael Strano, senior author of the study.

Colloids can access environments and travel in ways that other materials can’t. Dust particles, for example, can float indefinitely in the air because they are small enough that the random motions imparted by colliding air molecules are stronger than the pull of gravity. Similarly, colloids suspended in liquid will never settle out.

Strano says that while other groups have worked on the creation of similarly tiny robotic devices, their emphasis has been on developing ways to control movement, for example by replicating the tail-like flagellae that some microbial organisms use to propel themselves.

But Strano suggests that may not be the most fruitful approach, since flagellae and other cellular movement systems are primarily used for local-scale positioning, rather than for significant movement.

For most purposes, making such devices more functional is more important than making them mobile, he said.

The tiny robots made by the MIT team are self-powered, requiring no external power source or even internal batteries.

A simple photodiode provides the trickle of electricity that the tiny robots’ circuits require to power their computation and memory circuits.

That’s enough to let them sense information about their environment, store those data in their memory, and then later have the data read out after accomplishing their mission.

Such devices could ultimately be a boon for the oil and gas industry, Strano said.

Currently, the main way of checking for leaks or other issues in pipelines is to have a crew physically drive along the pipe and inspect it with expensive instruments.

In principle, the new devices could be inserted into one end of the pipeline, carried along with the flow, and then removed at the other end, providing a record of the conditions they encountered along the way, including the presence of contaminants that could indicate the location of problem areas.

The initial proof-of-concept devices didn’t have a timing circuit that would indicate the location of particular data readings, but adding that is part of on-going work.

Similarly, such particles could potentially be used for diagnostic purposes in the body, for example to pass through the digestive tract searching for signs of inflammation or other disease indicators, the researchers said.

Sign up to the E&T News e-mail to get great stories like this delivered to your inbox every day.

Recent articles

Info Message

We use cookies to give you the best online experience. Please let us know if you agree to all of these cookies.

Learn more about IET cookies and how to control them