‘Life support system for the limb’ designed for battlefield deployment

Biomedical engineers have created a new technique for treating injured limbs which could reduce amputations after battlefield injuries.

Created in response to experiences in Iraq and Afghanistan, where Improvised Explosive Devices caused traumatic injury, the three-stage approach brings together kit that can be used in the field, with highly specialised solutions once the patient is evacuated to a hospital.

Described as a ‘life-support system for the limb’ the kit aims to give doctors precious time to attempt to repair damage and reduce amputations.

The first stage of the treatment sees a novel tourniquet applied to the limb, which applies pressure at different points, reducing pressure and damage to specific areas.

A cooling ‘sock’ is then wrapped around the tissue, to preserve it from further damage until the casualty can be evacuated to a care facility.

Once at a hospital, the limb is then placed inside a protective ‘box’, which can sustain the area while doctors attempt repairs.

The box has specially decontaminated air to reduce infection and continually supplies the affected area with blood.

Weighing only 5kg, the technology is specially designed for deployment on operations and to be used by combat medics. The system could also be used in a non-military setting, for example natural disasters or remote locations.

Following successful trials, the system is set to be available commercially and could one day form part of the medical kit in every frontline unit.

Professor Terry Gourlay, part of the Strathclyde University team that developed the technology, said: “We looked at every stage of the journey an injured soldier follows after injury to ensure our solution was designed specifically for them.

“The system we have developed is essentially a life-support system for the limb which gives doctors precious time to attempt to repair damage while ensuring the safety of the patient.”

The technique was funded by The Defence Science and Technology Laboratory (Dstl) through the Defence and Security Accelerator.

Dr Neal Smith, medical sciences capability adviser from Dstl, added: “While this technique may not be right for every injury, it is a hugely important innovation which could save the limbs of many more of those affected.

“It’s a fantastic example of where we work with academics to fund life-changing research which has been turned into a product to improve the quality of life of those injured in service.”

Recent articles

Info Message

Our sites use cookies to support some functionality, and to collect anonymous user data.

Learn more about IET cookies and how to control them