Sentinel satellite

Floating space cables could save fuel on satellites

Image credit: ESA/ATG Medialab

Researchers in Spain have designed a device that could generate electricity and thrust on satellites without chemical propellants. This innovation, which has led to two national patents, has attracted the interest of the European Space Agency and of the space industry.

The system was developed by teams at the Universidad Carlos III de Madrid (UC3M) and the Universidad Politécnica de Madrid.

It is based on what is known as a low-work function tether: a thin kilometre-size aluminium tape a few centimetres wide with enhanced electron emission properties on receiving sunlight and heat.

The tape, which is rolled up in a reel during the launch, is deployed once in orbit. Following the laws of electromagnetism, the tether can generate power passively while the altitude of the satellite lowers. Conversely, if there is available power for on-board use, the tether can be used to produce a thrust force that increases the altitude of the orbit.

According to one inventor, Gonzalo Sánchez Arriaga, Ramón y Cajal researcher at the Bioengineering and Aerospace Engineering Department at UC3M, “This is a disruptive technology because it allows one to transform orbital energy into electrical energy and vice versa without using any type of consumable.

“Unlike current propulsion technologies, the low-work function tether needs no propellant and it uses natural resources from the space environment such as the geomagnetic field, the ionospheric plasma and the solar radiation”, he adds.

The two patents “System for generating electrical power in orbit by means of floating conductor cables” and “System for in-orbit propulsion via floating conductor cables” are based on an electrodynamic effect known as the Lorentz drag. Although in daily life we are more familiar with aerodynamic drag, Lorentz drag can be easily observed by letting a magnet fall inside a copper tube.

“Space tethers have been investigated for decades and have flown in more than 20 space missions. Our contribution to this technology comes from a strikingly simple design in which two lightweight aluminium tapes deployed from a satellite without any active electron emitter are able to supply power and/or propulsion to a spacecraft. Besides, to make things more efficient, we thought about exploiting the photoelectric effect of the tapes exposed to sunlight. We believe that this is an extremely important simplification which can boost tether technology,” states the other patent author, Claudio Bombardelli, from the UPM Space Dynamic research group.

As the system provides useful power while the satellite deorbits towards reentry and burning in the atmosphere, it could have a role in eliminating space debris.

In addition, if the satellite has onboard power, the tether can work the other way around and generate thrust to increase altitude. “This could be an interesting application for the International Space Station (ISS), for instance. Nowadays, a large amount of propellant must be used to reboost the ISS altitude to compensate for the action of the atmospheric drag,” Gonzalo Sánchez Arriaga notes. “With a low-work function tether and the energy provided by the solar panel of the ISS, the atmospheric drag could be compensated without the use of propellant.”

The researchers have provided information about low-work function tethers to the European Space Agency and are in touch with experts in the USA and Japan. In addition, stakeholders in the space sector, such as the Spanish company SENER have expressed interest in this innovation.

The next steps include the extension of the patents to the European area and to start the manufacturing of small-scale prototypes. Sánchez Arriaga says the team has been awarded a research grant by the Ministry of Economy, Industry and Competitiveness of Spain to investigate promising materials.

Recent articles

Info Message

Our sites use cookies to support some functionality, and to collect anonymous user data.

Learn more about IET cookies and how to control them