The computer model uses two years of oceanographic data

Ocean computer simulation reveals alternative MH370 location

The location of Malaysia Airlines MH370, which crashed while carrying 239 passengers in March 2014, has been estimated by a team of Italian researchers by using ocean-current modelling combined with the location of debris that has been found.

“Our result is the first to calculate the movement of the debris that best agrees with all five of the currently confirmed discoveries. This should make it the most accurate prediction,” says Eric Jansen, lead-author of the study.

Extensive search efforts in the southern Indian Ocean, where the aircraft is thought to have crashed, have yet to locate the main wreckage, though debris have washed up on the African east coast and Indian-ocean islands.

The international rescue team announced last week that it will abandon operation after two years of looking if the plane is not found in the current search area. 

The northern half of the area where authorities are currently searching for the plane, off the coast of Australia, overlaps with the area the new simulation indicates as the most likely origin of the debris found so far.

“However, our simulation shows that the debris could also have originated up to around 500 km further to the north,” Jansen said. “If nothing is found in the current search area, it may be worth extending the search in this direction.”

This echoes comments made by Fugro, the engineering group leading the current search, which recently suggested that the failure to find the remains of the aircraft suggest the bulk of it is in another location. 

To find out how MH370 debris drifted since the crash, the researchers ran a computer model that used oceanographic data from the EU Copernicus Marine Environment Monitoring Service, including data of global surface currents and winds over the past two years.

To improve their simulation, they used the locations of the five confirmed debris found to date: two in Mozambique and one each in Réunion, South Africa and Rodrigues Island (Mauritius). 

They started their computer simulation by placing a large number of virtual particles in the ocean, and then examined where they would go based on the ocean currents and winds after the crash.

Since the exact crash location and how much of an effect wind has on the debris are unknown, the researchers simulate different scenarios. From this, they could construct a so-called superensemble: a combination of simulations that best describes the debris found so far.

“Imagine that you want to know what the weather is going to be tomorrow, but you have several websites that give contradictory information. Which one do you trust? You check what weather they predicted for today and you put more faith in the websites that were correct and less in those that were wrong,” Jansen explained.

“This is more or less what we do for MH370: we perform many simulations that are all plausible given the information that we know about the flight. When we combine the results of all these simulations, we give more importance to those that predicted the debris that was found correctly.”

“If new debris is discovered, we can update the result in a matter of minutes.”

In the first stage of the simulation, the computer model calculates the various ways in which debris could have drifted, which takes some time on their supercomputer.

But the locations of the discovered debris are only used in the final stage, when combining the possible drift paths to find the most likely ones. Once the first stage of the computer model is run, it is quick and easy to incorporate new debris data.

The results indicate that the most probable locations to discover additional washed up debris are Tanzania and Mozambique, as well as the islands of Madagascar, Réunion, Mauritius and the Comoros.

The main wreckage is likely to be in the wide search area between 28°S and 35°S. This overlaps with the current underwater search area between 32°S and 35°S, but indicates the airliner could also be further north than where authorities are currently searching.

“The disappearance of flight MH370 is probably one of the most bizarre events in modern history. It is important to understand what happened, not only for all the people directly involved, but also for the safety of aviation in general. We hope that we can contribute to this, even if our study is just a small piece of a very complicated puzzle.”

Recent articles

Info Message

Our sites use cookies to support some functionality, and to collect anonymous user data.

Learn more about IET cookies and how to control them

Close