A 3D-printed rocket part blazes to life during a hot-fire test

Nasa tests largest ever 3D-printed rocket component

The largest 3D-printed rocket engine component Nasa has ever tested has generated a record 20,000 pounds of thrust.

The component tested during the engine firing, an injector, delivers propellants to power an engine and provides the thrust necessary to send rockets to space.

During the injector test, liquid oxygen and gaseous hydrogen passed through the component into a combustion chamber and produced 10 times more thrust than any injector previously fabricated using 3D printing.

The test is a milestone for advances the agency is making to reduce the cost of space hardware, through new processes like additive manufacturing, or 3D printing.

"This successful test of a 3D printed rocket injector brings Nasa significantly closer to proving this innovative technology can be used to reduce the cost of flight hardware," said Chris Singer, director of the Engineering Directorate at Nasa's Marshall Space Flight Center in Huntsville Alabama.

The component was manufactured using selective laser melting, which method builds up layers of nickel-chromium alloy powder to make the complex, subscale injector with its 28 elements for channelling and mixing propellants.

The part was similar in size to injectors that power small rocket engines and was similar in design to injectors for large engines, such as the RS-25 engine that will power Nasa's Space Launch System (SLS) rocket for deep space human missions to an asteroid and Mars.

"This entire effort helped us learn what it takes to build larger 3D parts; from design, to manufacturing, to testing," said Greg Barnett, lead engineer for the project. "This technology can be applied to any of SLS's engines, or to rocket components being built by private industry."

One of the keys to reducing the cost of rocket parts is minimizing the number of components. The new injector had only two parts, whereas a similar injector tested earlier had 115 parts.

Fewer parts require less assembly effort, which means complex parts made with 3D printing have the potential for significant cost savings.

"We took the design of an existing injector that we already tested and modified the design so the injector could be made with a 3D printer," said Brad Bullard, the propulsion engineer responsible for the injector design.

"We will be able to directly compare test data for both the traditionally assembled injector and the 3D printed injector to see if there's any difference in performance."

Early data from the test, which took place on 22 August, conducted at pressures up to 1,400 pounds per square inch in a vacuum and at almost 6,000 degrees Fahrenheit (3,000°C), indicate the injector worked flawlessly.

The injector was made by Directed Manufacturing, of Austin, Texas, but Nasa owns the injector design.

NASA will make the test and materials data available to all US companies through the Materials and Processes Information System database managed by Marshall's materials and processes laboratory.

Recent articles

Info Message

Our sites use cookies to support some functionality, and to collect anonymous user data.

Learn more about IET cookies and how to control them