Researchers have created a graphene-based ink that could be sued to print flexible electronic devices

Graphene-based ink to print flexible electronics

An inkjet printer using graphene-based ink developed by researchers could herald a breakthrough in flexible electronics.

A team from Northwestern University have recently developed a graphene-based ink that is highly conductive and tolerant to bending, which they have used to print graphene patterns that could be used for extremely detailed, conductive electrodes.

The resulting patterns are 250 times more conductive than previous attempts to print graphene-based electronic patterns and could be a step toward low-cost, foldable electronics.

"Graphene has a unique combination of properties that is ideal for next-generation electronics, including high electrical conductivity, mechanical flexibility, and chemical stability," says Mark Hersam, professor of materials science and engineering at Northwestern's McCormick School of Engineering and Applied Science.

“By formulating an inkjet-printable ink based on graphene, we now have an inexpensive and scalable path for exploiting these properties in real-world technologies."

Inkjet printing has previously been explored as a method for fabricating transistors, solar cells, and other electronic components as it is inexpensive, capable of printing large areas, and can create patterns on a variety of substrates, making it an attractive option for next-generation electronics.

Inkjet printing with wonder material graphene – one atom-thin sheets of carbon with exceptional strength and conductivity – is promising, but has remained a challenge because it is difficult to harvest a sufficient amount of graphene without compromising its electronic properties.

Exfoliating, or breaking apart, materials such as graphite often require oxidizing conditions that make the resulting graphene oxide material less conductive than pure carbon.

Pristine unoxidized graphene can be achieved through exfoliation, but the process requires solvents whose residues also decrease conductivity.

The Northwestern researchers instead developed a new method for mass-producing graphene that maintains its conductivity and can be carried out at room temperature using ethanol and ethyl cellulose to exfoliate graphite.

The relatively clean process minimizes residues and results in a powder with a high concentration of nanometre-sized graphene flakes, which is then mixed into a solvent to create the ink.

The researchers demonstrated printing the ink in multiple layers, each 14 nanometres thick, to create precise patterns. The ink's conductivity remains virtually unchanged, even when bent to a great degree, suggesting that graphene inks could be used to create foldable electronic devices in the future.

Recent articles

Info Message

Our sites use cookies to support some functionality, and to collect anonymous user data.

Learn more about IET cookies and how to control them