Anti-fogging glass coating developed

5 March 2013
By Sofia Mitra-Thakur
Mobile version
Share |
A young man looks through a frosted window

A young man looks through a frosted window

Researchers at the Massachusetts Institute of Technology (MIT) have developed a glass coating that prevents fogging without distorting its optical properties.

The team, led by Michael Rubner, TDK Professor of Polymer Materials Science and Engineering, developed a method for testing different coatings and materials to see how effective they were at preventing glass from fogging or frosting up.

Their new approach has been published in a paper in the journal ACS Nano, written by Rubner, who is also director of MIT’s Center for Materials Science and Engineering; Robert Cohen, the Raymond A and Helen E St. Laurent Professor of Chemical Engineering; doctoral student Hyomin Lee; and recent MIT graduate Maria Alcaraz.

“When people want to tackle the fogging process, caused when microscopic water droplets condense on a cold surface and scatter light, the common way of doing it is to build a surface that’s so hydrophilic – water-loving – that the water spreads out into a sheet,” Rubner said.

“So even though the water’s there, it doesn’t scatter the light.”

However, this approach can be problematic as in applications where it’s important to get an undistorted view, such as cameras or other optical systems, the view can be quite distorted if the thickness of the layer of water varies considerably.

In addition, if the surface is cold, the water on the surface can begin to freeze, forming a frost layer that scatters light, Rubner said.

“If you’re going to have a sheet of water, how do you prevent it from freezing?” Rubner added.

For that purpose, a coating is needed that can absorb a lot of water in a form that cannot freeze. 

In fact in many applications it would be useful to have both hydrophobic and hydrophilic traits in the same material, which is what the team did.

They coined the term "Zwitter wettability" to describe this hybrid property.

Rubner said that Zwitter is a German word for hybrid, used in a number of chemistry terms to describe something that carries two opposite properties at once. 

In this case, it describes a surface that has the ability to behave as both hydrophobic (to water droplets) and hydrophilic (to gas-phase water molecules).

The surface is made by a process called layer-by-layer deposition. Alternating layers of two different polymers – poly(vinyl alcohol) and poly(acrylic acid) – are deposited on a glass surface. 

“The magic of what we do is nanoscale processing,” Rubner explained, by producing the layers so as to control their properties almost down to the level of individual molecules.

This production process appears relatively easy and inexpensive to carry out on large scales. 

“These are common polymers,” Rubner said. “They’re well-known and cheap, but brought together in a unique way.”

To test the effectiveness of this material, and that of many other alternatives, the team devised a set of extreme tests. 

For example, they kept samples of the material at minus 20°C for an hour, then exposed them to a very humid environment. 

While untreated glass, or glass treated with conventional hydrophilic or hydrophobic coatings, quickly develops a layer of frost following such treatment, glass with the new treatment remains clear. 

However, it still appears to be hydrophobic in the presence of large water droplets.

Lee said the researchers photographed the glass slides under carefully controlled conditions to measure its performance.

“We developed a protocol that allows us to detect how good one coating is in comparison with another,” he said.

Previous testing typically measured the light transmitted through the glass after exposure to humidity, but failed to measure the level of image distortion caused by water condensation. 

“We came up with a way to measure them not just for transmission, but also distortion,” Lee said.

While the new coating outperforms others, it does have one drawback: it is vanishingly thin, so could be vulnerable to aggressive cleaning or mechanical challenges. 

For this reason, it may not be useful for applications where it is exposed to harsh environments or to excessive wiping.

Another limitation is that the new coating only prevents small amounts of frost buildup; it wouldn’t work where there’s a continuous source of cold water, such as for deicing an airplane wing, Rubner said.

However, that leaves many possible uses: the inside of automobile windshields, safe from both weather and windshield wipers; the inside of supermarket refrigerator cases; and optical systems used in research or in photography. 

The coating could also be useful on the inner surfaces of double-pane windows, which can become fogged if even a small leak allows outside air into the sealed space.

Joseph Schlenoff, a professor of polymer science at Florida State University, said: “Everyone knows how inconvenient, or even dangerous, it is to have a cold window or lens fog up when water condenses on it. 

"The MIT group has devised a practical and effective method of combating the fogging problem using a new ultrathin polymer film.

"Both the materials themselves and the techniques used to explore their properties are highly innovative. These MIT engineers are literally helping us to see technology more clearly.”

The researchers' work was supported by Samsung and by the National Science Foundation.

Further information:

Read the full paper

Latest Issue

E&T cover image 1605

"We visit Barcelona, one of the smartest cities in the world, to find out what makes it so special. What does it look like and what is the future?"

E&T jobs

  • High Voltage Engineer

    Premium job

    Essex X-Ray & Medical Equipment
    • Great Dunmow, Essex

    This High Voltage Engineer will provide design leadership for high voltage cable assemblies up to one megavolt.

    • Recruiter: Essex X-Ray & Medical Equipment

    Apply for this job

  • Sales Electronics Engineer

    Premium job

    Precision Microdrives
    • London (Greater)
    • £25,000 - £30,000 starting salary, inclusive of on-target commissions.

    Precision Microdrives (PMD) is a fast growing technology company that designs, produces and trades miniature electro-mechanical mechanisms

    • Recruiter: Precision Microdrives

    Apply for this job

  • Analogue Electronics Engineer

    Premium job

    Swedish Institute of Space Physics (IRF)
    • Uppsala (Stad) (SE)

    The Swedish Institute of Space Institute (IRF) in Uppsala search for an analogue electronics engineer.

    • Recruiter: Swedish Institute of Space Physics (IRF)

    Apply for this job

  • Principal Robotic Systems Engineer

    Premium job

    National Oceanographic Centre
    • Southampton, Hampshire
    • £45,271 to £49,207 per annum

    Responsible for technical oversight and project management of internally and externally funded innovation centre projects.

    • Recruiter: National Oceanographic Centre

    Apply for this job

  • Smart Grid Research Engineer

    Premium job

    University of Strathclyde
    • Cumbernauld, Glasgow
    • Grade: 6/7* £26,537 - £37,768*

    Work as part of a growing dynamic team on a wide range of technical projects with particular emphasis on experimental validation and testing

    • Recruiter: University of Strathclyde

    Apply for this job

  • Electrical Engineer - Water

    Premium job

    Mott MacDonald
    • Peterborough, Cambridgeshire

    Mott MacDonald's highly successful Water and Environment Unit is recruiting an electrical engineer....

    • Recruiter: Mott MacDonald

    Apply for this job

  • Electrical Design Engineer

    Premium job

    Mott MacDonald
    • Cambridge, Cambridgeshire

    Mott MacDonald's highly successful water business continues to win and deliver a fantastic amount of work....

    • Recruiter: Mott MacDonald

    Apply for this job

  • Senior Electronics Engineer

    York Instruments
    • York, North Yorkshire

    Senior electronics engineer to work as part of a team developing an MEG imaging system; working with the engineering team and external contractors.

    • Recruiter: York Instruments

    Apply for this job

  • Field Application Engineer

    • Madrid

    Responsible for giving product presentations to the customer describing how Intel products provide the optimum solution to their application.

    • Recruiter: Intel

    Apply for this job

  • Control Engineer

    Bank of England
    • Debden
    • Competitive

    We’re looking for a qualified engineer with experience of computer programming for engineering systems and instrumentation.

    • Recruiter: Bank of England

    Apply for this job

More jobs ▶


Choose the way you would like to access the latest news and developments in your field.

Subscribe to E&T