Superconductivity roadblock breakthrough

14 February 2013
By Edward Gent
Mobile version
Share |
This mosaic represents the distribution of superconductivity around holes, marked in white, in a thin sheet of superconducting film. Green indicates strong superconductivity. Further away from the holes, the superconductivity decreases, from yellow to red and finally to black, where the material is densely populated with vortices that interfere with superconductivity

This mosaic represents the distribution of superconductivity around holes, marked in white, in a thin sheet of superconducting film. Green indicates strong superconductivity. Further away from the holes, the superconductivity decreases, from yellow to red and finally to black, where the material is densely populated with vortices that interfere with superconductivity

Researchers believe they have cracked one of the major roadblocks to applying superconductor technology to the real world.

A team of researchers from Russia, Spain, Belgium, the UK and the US Department of Energy's (DOE) Argonne National Laboratory have announced they have discovered a way to efficiently stabilise tiny magnetic vortices that interfere with superconductivity.

The problem has plagued scientists trying to engineer real-world applications for decades and the discovery could remove one of the most significant obstacles to advances in superconductor technology.

When magnetic fields reach a certain strength they cause a superconductor to lose its superconductivity. There is a type of superconductor, known as "Type II", which are better at surviving in relatively high magnetic fields.

In these materials, magnetic fields create tiny whirlpools or "vortices" and while superconducting current continues to travel around these vortices to a point, eventually, as the magnetic field strengthens, the vortices begin to move about and interfere with the material's superconductivity, introducing resistance.

"These vortices dissipate the energy when moving under applied currents and bury all hopes for a technological revolution; unless we find ways to efficiently pin them," said Argonne Distinguished Fellow Valerii Vinokur, who co-authored the study.

Scientists have tried to immobilise these vortices for decades, but until now, they had only found ways to pin down the vortices in a restricted range of low temperatures and magnetic fields.

However, Vinokur and his colleagues discovered a surprise when using very thin superconducting wires just 50 nanometers in diameter which can accommodate only one row of vortices.

When they applied a high magnetic field, the vortices crowded together in long clusters and stopped moving – increasing the magnetic field restored the material's superconductivity, instead of destroying it.

Next, the team carved superconducting film into an array of holes so that only a few vortices could squeeze between the holes, where they stayed, unable to interfere with current.

The resistance of the superconductor dropped dramatically at temperatures and magnetic fields where no one has been able to pin vortices before, though the team has only experimented with low-temperature superconductors so far.

"The results were quite striking," Vinokur said. “There is no reason why the approach we used should be restricted to just low-temperature superconductors."

The paper, 'Magnetic field-induced dissipation-free state in superconducting nanostructures', is published this week in Nature Communications.

Latest Issue

E&T cover image 1607

"As the dust settles after the referendum result, we consider what happens next. We also look forward to an international summer of sport."

E&T jobs

  • Control System Engineer

    United Utilities
    • Lancaster, Lancashire
    • Up to £33415 + Comprehensive Benefits

    Provide ICA maintenance and engineering support to the Water & Wastewater Production

    • Recruiter: United Utilities

    Apply for this job

  • Signal Processing Engineer

    B&W Group
    • Steyning, West Sussex
    • Competitive Salary

    We are looking for a Signal Processing Engineer to support the R&D process on active loudspeaker products.

    • Recruiter: B&W Group

    Apply for this job

  • Principal Mechanical & Electrical Engineer

    De Montfort University
    • Leicestershire
    • Grade G: £36,672 - £46,414 per annum

    Join the Projects Team to develop and manage medium to large projects on the university estate.

    • Recruiter: De Montfort University

    Apply for this job

  • Advanced Commissioning Engineer

    National Grid
    • Nottinghamshire, Nottingham, England
    • £46000 - £57000 per year

    National Grid is at the heart of energy in the UK. The electricity we provide gets the nation to work, powers schools and lights everyone's way home. Our energy network connects the nation, so it's essential that it's continually evolving, advancing and i

    • Recruiter: National Grid

    Apply for this job

  • Electrical Design Engineer

    Oxford Instruments
    • Yatton, Bristol
    • Competitive salary plus excellent benefits

    We are looking for an electrical designer to join our engineering design team.

    • Recruiter: Oxford Instruments

    Apply for this job

  • Skilled Electrical Fitter

    MBDA
    • Bolton
    • Competitive Salary & Benefits

    What?s the opportunity?   The Electrical Fitter will carry out manufacturing and test tasks within the electrical department in accordance with product certification procedures, defined workmanship  ...

    • Recruiter: MBDA

    Apply for this job

  • Electrical Manufacturing Technician

    MBDA
    • Stevenage
    • Competitive Salary & Benefits

    What?s the opportunity?   As a qualified craftsman with experience in electrical manufacturing, the Manufacturing Technician will report to a Team Leader, receiving day to day ...

    • Recruiter: MBDA

    Apply for this job

  • Consultant Engineer (Electrical Power)

    BAE Systems
    • Cumbria, Barrow-In-Furness, England
    • Negotiable

    Consultant Engineer (Electrical Power) Would you like to play a key role in providing technical direction to the design of power systems on the Successor class submarines, which will replace the current Trident-equipped Vanguard class, currently in servic

    • Recruiter: BAE Systems

    Apply for this job

  • Supply Restoration Team Manager (HV/SAP)

    SSE
    • Oxford, Oxfordshire
    • Salary: £37,588 to £49,645 + Car (SSE8) Depending on skills and experience

    SSE is looking to recruit a Supply Restoration Team Manager to join our existing team in Oxford.

    • Recruiter: SSE

    Apply for this job

  • Electrical Technical Lead - Global Operations, Engineering & Laboratory

    Pfizer Ltd
    • Kent

    An exciting opportunity has arisen to join a dynamic team of professional engineers, supporting the development of novel drugs.

    • Recruiter: Pfizer Ltd

    Apply for this job

More jobs ▶

Subscribe

Choose the way you would like to access the latest news and developments in your field.

Subscribe to E&T