Scientists create new type of solar cell

12 February 2013
By Sofia Mitra-Thakur
Mobile version
Share |
Elias Assmann (left) and Karsten Held (right) demonstrate the idea behind the new solar cell

Elias Assmann (left) and Karsten Held (right) demonstrate the idea behind the new solar cell

Researchers at the Vienna University of Technology have demonstrated that a recently discovered class of materials can be used to create a new kind of solar cell.

Single atomic layers are combined to create novel materials with completely new properties.

Layered oxide heterostructures are a new class of materials, which have attracted a great deal of attention among materials scientists in the last few years.

A research team at the Vienna University of Technology, together with colleagues from the USA and Germany, has now shown that these heterostructures can be used to create a new kind of extremely efficient ultra-thin solar cells.

“Single atomic layers of different oxides are stacked, creating a material with electronic properties which are vastly different from the properties the individual oxides have on their own,” said Professor Karsten Held from the Institute for Solid State Physics, Vienna University of Technology.

In order to design new materials with exactly the right physical properties, the structures were studied in large-scale computer simulations. 

As a result of this research, the scientists at TU Vienna discovered that the oxide heterostructures hold great potential for building solar cells.

The basic idea behind solar cells is the photoelectric effect. 

Its simplest version was already explained by Albert Einstein in 1905: when a photon is absorbed, it can cause an electron to leave its place and electric current starts to flow. When an electron is removed, a positively charged region stays behind – a so-called “hole”. Both the negatively charged electrons as well as the holes contribute to the electrical current.

“If these electrons and holes in the solar cell recombine instead of being transported away, nothing happens and the energy cannot be used”, said Elias Assmann, who carried out a major part of the computer simulations at TU Vienna. “The crucial advantage of the new material is that on a microscopic scale, there is an electric field inside the material, which separates electrons and holes.”

This increases the efficiency of the solar cell. The oxides used to create the material are actually isolators. However, if two appropriate types of isolators are stacked, an astonishing effect can be observed: the surfaces of the material become metallic and conduct electrical current.

“For us, this is very important. This effect allows us to conveniently extract the charge carriers and create an electrical circuit,” said Prof Held.

Conventional solar cells made of silicon require metal wires on their surface to collect the charge carriers – but these wires block part of the light from entering the solar cell.

Not all photons are converted into electrical current with the same efficiency. 

For different colours of light, different materials work best.

“The oxide heterostructures can be tuned by choosing exactly the right chemical elements,” said Professor Blaha at TU Vienna.

In the computer simulations, oxides containing Lanthanum and Vanadium were studied, because that way the materials operate especially well with the natural light of the sun.

“It is even possible to combine different kinds of materials, so that different colours of light can be absorbed in different layers of the solar cell at maximum efficiency,” said Assmann.

The team from TU Vienna was assisted by Satoshi Okamoto (Oak Ridge National Laboratory, Tennessee, US) and Professor Giorgio Sangiovanni, a former employee of TU Vienna, who is now working at Würzburg University, Germany. 

The new solar cells will now be built and tested in Würzburg.

“The production of these solar cells made of oxide layers is more complicated than making standard silicon solar cells,” Prof Held said. "But wherever extremely high efficiency or minimum thickness is required, the new structures should be able to replace silicon cells."

Latest Issue

E&T cover image 1605

"We visit Barcelona, one of the smartest cities in the world, to find out what makes it so special. What does it look like and what is the future?"

E&T jobs

  • High Voltage Engineer

    Premium job

    Essex X-Ray & Medical Equipment
    • Great Dunmow, Essex

    This High Voltage Engineer will provide design leadership for high voltage cable assemblies up to one megavolt.

    • Recruiter: Essex X-Ray & Medical Equipment

    Apply for this job

  • Sales Electronics Engineer

    Premium job

    Precision Microdrives
    • London (Greater)
    • £25,000 - £30,000 starting salary, inclusive of on-target commissions.

    Precision Microdrives (PMD) is a fast growing technology company that designs, produces and trades miniature electro-mechanical mechanisms

    • Recruiter: Precision Microdrives

    Apply for this job

  • Smart Grid Research Engineer

    Premium job

    University of Strathclyde
    • Cumbernauld, Glasgow
    • Grade: 6/7* £26,537 - £37,768*

    Work as part of a growing dynamic team on a wide range of technical projects with particular emphasis on experimental validation and testing

    • Recruiter: University of Strathclyde

    Apply for this job

  • Senior Development Engineer, Electronics

    Premium job

    Helmet Integrated Systems / Gentex Corporation
    • Letchworth Garden City, Hertfordshire
    • Competitive

    We are innovative, robust and fast growing business, whose main focus is to deliver continues improvement to existing products and offer new soluti...

    • Recruiter: Helmet Integrated Systems / Gentex Corporation

    Apply for this job

  • Analogue Electronics Engineer

    Premium job

    Swedish Institute of Space Physics (IRF)
    • Uppsala (Stad) (SE)

    The Swedish Institute of Space Institute (IRF) in Uppsala search for an analogue electronics engineer.

    • Recruiter: Swedish Institute of Space Physics (IRF)

    Apply for this job

  • Principal Robotic Systems Engineer

    Premium job

    National Oceanographic Centre
    • Southampton, Hampshire
    • £45,271 to £49,207 per annum

    Responsible for technical oversight and project management of internally and externally funded innovation centre projects.

    • Recruiter: National Oceanographic Centre

    Apply for this job

  • Electrical Engineer - Water

    Premium job

    Mott MacDonald
    • Peterborough, Cambridgeshire

    Mott MacDonald's highly successful Water and Environment Unit is recruiting an electrical engineer....

    • Recruiter: Mott MacDonald

    Apply for this job

  • Electrical Design Engineer

    Premium job

    Mott MacDonald
    • Cambridge, Cambridgeshire

    Mott MacDonald's highly successful water business continues to win and deliver a fantastic amount of work....

    • Recruiter: Mott MacDonald

    Apply for this job

  • ILS Engineer (Spares Modelling)

    BAE Systems
    • Bristol, England / Glasgow, Scotland / Portsmouth, Hampshire, England
    • Competitive package

    As an ILS Supply and Support Engineer, you will be analysing supplier recommendations related to equipment spares, and carrying out ranging and scaling and modelling, to ensure appropriate equipment availability throughout the life of the ship

    • Recruiter: BAE Systems

    Apply for this job

  • Senior Research Fellow - Power Networks Metrology

    University of Strathclyde
    • Strathclyde
    • £49,230 - £55,389

    The University of Strathclyde seeks an experienced post-doctoral researcher to join their collaborative smart grids research programme.

    • Recruiter: University of Strathclyde

    Apply for this job

More jobs ▶

Subscribe

Choose the way you would like to access the latest news and developments in your field.

Subscribe to E&T