$1m prize for innovation in field of ‘electroceuticals’

11 April 2013
By Edd Gent
Mobile version
Share |
GlaxoSmithKline is offering a $1m prize to stimulate innovation in the field of “electroceuticals”

GlaxoSmithKline is offering a $1m prize to stimulate innovation in the field of “electroceuticals”

Britain's biggest drug maker is offering a $1m prize to stimulate innovation in the field of “electroceuticals”.

As well as the prize GlaxoSmithKline will fund up to 40 researchers working in external laboratories in the field, which aims to develop new ways of treating diseases by targeting electrical signals in the body.

The initiative is a long-term gamble on the promise of a new kind of medicine, using electrical impulses rather than the chemicals or biological molecules found in today's drugs, but GSK believes it is ahead of rivals in the emerging area and, given the early-stage nature of the work, the drugmaker aims to play a coordinating role in bringing researchers together.

Exploiting the potential of the new field will involve combining skills from biology, computing, material science and nanotechnology, including devising new kinds of miniature power sources.

GSK will host a global forum in December to bring research leaders together and collectively identify one key hurdle in the field and the $1m prize will go to the research group able to overcome that hurdle.

"At GlaxoSmithKline and in academia, we are confident that this field will deliver real medicines, and we are mobilising resources for this journey," GSK head of bioelectronics research Kristoffer Famm and colleagues wrote in the journal Nature.

The new field of "electroceuticals" has grabbed the attention of a number of academic research groups, which are already mapping neural circuits in animals and humans, and working on potential interventions for testing in clinical trials.

Academic centres involved in the research effort include the Massachusetts Institute of Technology, the University of Pennsylvania and the Feinstein Institute of Medical Research.

The idea is to use the electrical impulses that form the "language" of the body's nervous system to address a range of diseases, from high blood pressure to breathing problems and, eventually, brain disorders.

Moncef Slaoui, chairman of GSK research and development, said bioelectronics was set to be the next big wave in medicine, comparable to the rise in biological therapies over the past 15 years triggered by advances in biotechnology.

"This is our vision for the next 10 to 20 years," he said. "In the future, a big chunk of R&D will be doing bioelectronics."

The concept is not completely new. Large-scale electrical devices have been used for years as heart pacemakers and, more recently, electrical stimulation has been applied to treat Parkinson's disease, severe depression and some neurological disorders, as well as to improve bladder control.

St Jude Medical, for example, on Wednesday won European approval for a brain implant to treat an incurable neurological condition called dystonia, while nerve-deadening devices have also been shown to reduce stubbornly high blood pressure.

But in future GSK wants to apply electrical interventions at the micro level by targeting specific cells within neural circuits, which could lead to novel nanoscale implants to coax insulin from cells to treat diabetes or correct muscle imbalances in lung diseases or regulate food intake in obesity.

The approach could also one day be used to treat disorders of the brain itself – assuming scientists can decipher the hugely complex neural circuitry involved.

Share |

Latest Issue

E&T cover image 1404

"Power cuts might seem like a 1970s fad, but they could be on the way back. How can we prevent them happening again?"

E&T videos

TomTom mapping the neighbourhood

E&T jobs

E&T Marketplace

The essential source of engineering products and suppliers.

E&T podcast

Tune into our latest podcast

iTunes logo

Subscribe

Choose the way you would like to access the latest news and developments in your field.

Subscribe to E&T