vol 11, issue 2

Touchscreens: future technology goes beyond the glass

15 February 2016
By By Chris Edwards
Share |
‘Minority Report’ promotional rendering

Minority Report’ provided a sci-fi blueprint for human-machine interactions. Now its vision is close to reality

Zytronic plant

Zytronic has expanded production capacity at its touchscreen plant in north-east England

Designers are stretching the capabilities of capacitive touch as they inch their way towards fully gesture-based interfaces.

When it hit movie theatres in 2002, ‘Minority Report’ tried to convey a world 40 years into our future with billboards that respond to people as they walk by and a much-copied giant transparent computer display that responds to touches and mid-air gestures.

We are, luckily, a little way from billboards that know our names and shout them out. But the big panel that will understand the gestures we make when we wag our fingers at it? That is not far away at all.

The impetus is not coming from movies and TV shows. Technology is more a follower of real-world fashion. The driving force is, right now, the consumer electronics industry and the current fashion leader in that environment: Apple. It does not take long for success in the consumer field to translate into demand in other sectors. Car makers have begun to ship high-end models that incorporate touchscreens into their dashboards. And industrial control manufacturers have embraced increasingly complex forms of touch, such as the multiple-touch and gesture support found in the iPhone.

Ian Crosby, sales and marketing director at Zytronic, says: “Six years ago multitouch didn’t really exist in commercial and industrial markets. It was more just about buttons – pressing them to switch on or off. Then, after Apple introduced gestures for pitches and zooms, that sparked a rapid adoption in industrial markets.”

The mainstay of the industrial touchscreen and for many smartphones up to then was the resistive touchscreen. But it has drawbacks when it comes to creating user interfaces.

“The idea of multitouch with gestures was something that was never realised with resistive technology,” says TouchNetix managing director Chris Ard.

After the iPhone launch the consumer electronics industry jumped onto projected capacitive and it became the main technology for touch. “That didn’t affect us directly but what we did see was that more of our traditional customers also started to become interested in the benefits of projected capacitive touch,” Crosby says.

Simon Duggleby, product marketing manager for semiconductors at RS Components, says industrial designs have seen a migration away from traditional industrial user interfaces. “There was a time when everything used a seven-segment display with lots of buttons and knobs. But many have shifted to a display. People have gone from appreciating tactile buttons to almost not wanting them. They want a more seamless product.

“One of the other benefits for the professional, industrial customer is that it makes it easier to achieve a given IP rating for a sealed unit that needs to go into noisy and dirty environments, as well as medical situations,” Duggleby explains. “On the user side, people liked the feedback from screens. But they were not comfortable interacting directly with them. That has changed. People go up to a screen and expect to interact with the display directly. When they can’t, they start looking for a mouse and keyboard. It’s strange how expectations have moved so quickly.”

Traditionally, industrial user interfaces that use touch have favoured resistive or infrared technologies because they are mostly unaffected by moisture and still work when users are wearing thick gloves. Even here, the capacitive technology has encroached. “RS sells a range of gloves that work with capacitive,” Duggleby says. “And there is even paint to put on gloves to make them work, too.”

Fine tuning

One problem that has faced anyone who has splashed water onto their smartphone is that the touchscreen controller can become confused – registering phantom touches or not picking up any.

“When they first came out there were issues,” says Mike Logan, displays and input technologies manager at AndersDX. “But there are ICs that can overcome those problems.”

Logan points to a design put together for a coffee machine, which places a colour touchscreen above the nozzles that dispense the drinks. “You are going to get steam, and condensation forming on the display. At an early stage of development, it was upsetting the user interface. The good thing with this type of technology is that a lot of it is down to the software. The touch-controller supplier was able to write code that could recognise that it was just water. It all comes down to the fine-tuning. You will take each case as it comes.”

For systems that cannot tolerate false touches, TouchNetix developed its own auxiliary sensor interface that detects the tiny movements of a cover screen as the finger pushes down on the screen. The company has built up a business selling into agriculture machinery and marine designs.

“Our touchscreens behave flawlessly and they’re expected to because people die on a piece of agricultural equipment if it has a huge saw on it and it malfunctions. On a mobile phone, you lose an address and that’s all,” says Ard. “We built this ground-up with industrial in mind and developed our own chip. Our design has 100 per cent dirt and liquid tolerance: we can seal this thing completely.”

Although capacitive has become the mainstay of the touchscreen business, it has not replaced all other types. Logan says: “We still see projects that see resistive as the touch interface of choice. A lot of companies still use it because they are familiar with the features. But it’s very much for small monochrome or low-resolution displays. A lot ask whether it’s worth moving across to projected capacitive, as it may mean changing the software they have in place. When people start on new projects that require a touch interface, as nearly all of them do, they prefer capacitive.”

The capacitive touchscreens do not necessarily have to be for animated graphic displays. Logan says a number of the designs that his company works on involve custom printing and discrete touch keys that may surround a smaller display, much like older keypad-based designs.

Duggleby says some customers want to upgrade their traditional keypad and seven-segment LCD interfaces to graphical touch but keep their existing software. “The internal architecture of a product might be fine. But the expectation is that systems now have a touchscreen,” he says. This has led to the development of specialised touch controllers, such as the Eve series developed by FTDI Chip.

Gordon Lunn, FTDI’s engineering support manager, says: “We have been having a lot of success with companies who have existing seven-segment display solutions. The core functionality of the product they have runs on an 8-bit microcontroller but they want to get up to a colour TFT. They are worried that they are going to have to throw away their code with a move to a 32-bit processor with graphics. With this you just create a display list and Eve will handle all the graphics.”

Manufacturers of industrial systems expect Apple’s latest attempts to push capacitive touch further to have knock-on effects on their designs.

“The one we are starting to keep an eye on is force touch,” says Crosby. “It’s not really pressure sensing. It’s more that the screen detects the surface area of the fingertip. We can do that because it is not so much an electronics change as a firmware development. I can anticipate customers starting to ask for it once it gets mainstream in the consumer field.”

One application for Zytronic is in automated teller machines (ATMs) where the manufacturer wants to replace mechanical buttons with just a touchscreen. A light touch might act to trigger a beep to confirm that the user’s finger is on a virtual button, or magnify the text on the button, with a harder press activating it.

Ard says the TouchNetix design naturally lends itself to force touch. In this case, the force indication comes from the additional sensor in the rim of the cover glass. “When it comes to force sensing, Apple has been doing the marketing for us.”

Not everything the consumer industry introduces is an instant hit. Ard points to the ‘hover’ feature in some designs that detect when the user’s finger is close to the screen but not actually touching it. The idea is that the screen would light up as the finger approaches or zoom in on a group of icons. “In reality, nobody seems to use it. Most people turn it off as soon as possible,” he claims.

A possible application for hover sensing is in automotive dashboards as it could detect gestures such as a swipe or a circular wave of the finger to alter the music volume or skip to the next track without forcing the driver to look away from the road and land their finger on a particular part of the screen.

BMW has incorporated the idea into the AirTouch interface of the concept car it showed at January’s Consumer Electronics Show (CES) in Las Vegas. With this system, the driver uses gestures to move through menus, but confirms each action using a button on the steering wheel.

Free-space gestures

Another use is in appliances such as cooking hobs. “Do I really need to press buttons while I’m baking something and my hands are wet or covered in flour?” asks Andreas Guete, global marketing manager for human-interface devices at Microchip.

Microchip has developed a sensor technology based on the changes in the electric field around copper tracks on a PCB as objects move in and out of range. One implementation, tuned for low power, provides 2D gesture control for gadgets such as wireless headphones. The user changes volume, for example, by touching a side of one of the headphones and then sliding a finger up and down. The 3D version of the GestIC technology extends the sensing into free space: up to 20cm away.

“The customer either wants to touch the interface or not have to stretch out at all. Hovering at close range needs a lot of hand-eye coordination, which could be a nightmare in automotive systems. How do you know your finger is hovering just above the screen without looking?” Guete points out.

The combination of free-space gestures, multitouch and force touch point to a situation where the user-interface style presented as a future vision in ‘Minority Report’ is moving towards becoming a near-term reality.

The issue of screen size remains. Even there, capacitive is making inroads despite initially looking unsuitable for the job. Crosby points to the indium tin oxide (ITO) conductor usually printed onto the front of the touchscreen as the main problem. “ITO is pretty transparent. And you can [refractive] index-match it so you make it effectively transparent. The difficulty is that electrically speaking it has high resistance, which means you need to drive a high charge on large screens. Most touchscreen manufacturers using ITO top out at around 25in, although some have taken that up to 46in by pumping a lot of power into the matrix and doing things like tiling,” he explains.

Swedish company FlatFrog decided to move to a different technology that uses the way light reflects back inside the glass beyond a critical angle if not intercepted by something touching the surface. But, again, capacitive has been tuned to deal with the ITO problem.

Zytronic uses an array of very fine copper wire – just 10µm thick – to relay charge across the touchscreen. The much lower resistance of copper lets the screens scale up to more than 100in, Crosby says.

Such large screens today go into touch-tables for use in banks and stores so that customers can sit down and flick through a catalogue or salespeople can work through options for a loan or a new car. Museums have been among the earliest users of this type of display.

The integration of different touch technologies is part of Microchip’s plan for its gestural interfaces and Zytronic is pulling in other functions, such as adding cryptographic controllers through a partnership with Cryptera that will let it make payment terminals that comply with the banking industry’s security standards.

Duggleby says some customers have asked about the potential for touch on large 4K display, an indication of how much some want to push the technology. “The technology in Minority Report seemed almost miraculous at the time. A little over a decade later we’re almost there.”

Share |

Special screens: Made in Britain

The diversity of applications for touchscreens has enabled manufacture in the UK, instead of relying on low-cost mass production in Asia.

The decision by Newcastle-based Zytronic to adopt copper wiring rather than indium tin oxide (ITO) as the conducting elements in its capacitive touchscreens not only allows for the production of very large modules but also for low-run, local manufacture.

“It’s a relatively slow process, so it’s not really suitable for mass production,” says Ian Crosby, sales and marketing director at Zytronic. “But our market isn’t making hundreds or thousands of touchscreens at once.

“We don’t need special tooling for each design, unlike other methods; we plot out a pattern for each one. And we are not limited to just flat touchscreens. The nature of the process lets us build curved surfaces and we have glass-bending ovens to help make them.”

Another firm, TouchNetix, builds its customised industrial touchscreens in the UK.

“We have onshored some of our production, mainly for specialised work,” says TouchNetix managing director Chris Ard. “Most of what we’ve done to date is what I’d call specialised automotive. We mainly do agricultural and marine systems today. But the shift is moving very much towards factory automation.”

TouchNetix uses factories around the world, including one in the UK, to produce its core touchscreens and integrate them into modules incorporating a combination of the company’s own sensor and off-the-shelf touch-controller chips from suppliers such as Atmel.

The UK factory, operated by M-Solv, uses laser-based processing for the ITO conductor to avoid the need to create tooling for each display module, making it possible to build prototypes and low-volume runs at short notice. Higher volumes and designs that can accept higher lead times typically go offshore.

Related forum discussions
forum comment To start a discussion topic about this article, please log in or register.    

Latest Issue

E&T cover image 1605

"We visit Barcelona, one of the smartest cities in the world, to find out what makes it so special. What does it look like and what is the future?"

E&T jobs

  • Senior Development Engineer, Electronics

    Premium job

    Helmet Integrated Systems / Gentex Corporation
    • Letchworth Garden City, Hertfordshire
    • Competitive

    We are an innovative, robust and fast growing business, whose main focus is to deliver continues improvement to existing products and offer new sol..

    • Recruiter: Helmet Integrated Systems / Gentex Corporation

    Apply for this job

  • Smart Grid Research Engineer

    Premium job

    University of Strathclyde
    • Cumbernauld, Glasgow
    • Grade: 6/7* £26,537 - £37,768*

    Work as part of a growing dynamic team on a wide range of technical projects with particular emphasis on experimental validation and testing

    • Recruiter: University of Strathclyde

    Apply for this job

  • Electrical Asset Specialist

    Affinity Water
    • Hatfield, Hertfordshire

    Responsible for updating and writing electrical engineering standards, approved codes of practice and safe systems of work

    • Recruiter: Affinity Water

    Apply for this job

  • Senior Electronics Engineer

    York Instruments
    • York, North Yorkshire

    Senior electronics engineer to work as part of a team developing an MEG imaging system; working with the engineering team and external contractors.

    • Recruiter: York Instruments

    Apply for this job

  • Manufacturing Engineer - Circuit Card Assembly

    MBDA
    • Lostock Junction
    • Competitive Salary & Benefits

    What’s the opportunity?   Manufacturing UK is an integral part of the Operations Directorate whose principal mission is to ensure that MBDA’s deliverable commitments are met...

    • Recruiter: MBDA

    Apply for this job

  • High Voltage Engineer

    Premium job

    Essex X-Ray & Medical Equipment
    • Great Dunmow, Essex

    This High Voltage Engineer will provide design leadership for high voltage cable assemblies up to one megavolt.

    • Recruiter: Essex X-Ray & Medical Equipment

    Apply for this job

  • Team Leader - Flank Arrays

    BAE Systems
    • Barrow-In-Furness, Cumbria, England
    • Negotiable

    Team Leader - Flank Arrays Would you like to work in a unique role within the construction of the Astute Class submarines? We currently have a vacancy for a Team Leader - Flank Arrays at our site in Barrow-in-Furness. As a Team Leader - Flank Arrays, you

    • Recruiter: BAE Systems

    Apply for this job

  • Electronics and Software Engineer

    Copley Scientific Ltd
    • Nottingham
    • circa £35,000 per annum + bonus

    Develop new test equipment for the pharmaceutical industry. Good opportunities to grow and develop. Successful family-owned and managed business.

    • Recruiter: Copley Scientific Ltd

    Apply for this job

  • Bridge Test Facility Manager

    BAE Systems
    • Shropshire, Telford, England
    • Negotiable

    Bridge Test Facility ManagerWe currently have a vacancy for a Bridge Test Facility Manager at our site in Telford with our Land UK business.As the Bridge Test Facility Manager, you will be part of our Test & Trials team, working closely with the Mili

    • Recruiter: BAE Systems

    Apply for this job

  • Intelligent Transport Systems Engineer - Highways Technology

    Premium job

    Mott MacDonald
    • Birmingham, West Midlands

    Our transport technology team in Birmingham is currently growing a highly skilled and customer-focused team to...

    • Recruiter: Mott MacDonald

    Apply for this job

More jobs ▶

Subscribe

Choose the way you would like to access the latest news and developments in your field.

Subscribe to E&T