vol 11, issue 02

Mining asteroids for minerals and water

15 February 2016
By Holly Cave
Share |
A graphic of an asteroid in space

‘Water is plentiful in space but it’s mostly frozen into these big floating snowballs that we call asteroids’

Arkyd 6

Arkyd 6 will test Planetary Resources’ prospecting and Earth observation capabilities

OSIRIS REx

OSIRIS-REx will collect a sample from asteroid Bennu and return it to Earth in 2023

A graphic showing robotic probes scaning near-Earth asteroids

Robotic probes will scan near-Earth asteroids to gauge their mining potential

M-type asteroid Itokawa

M-type asteroid Itokawa

253 Mathilde, a C-type asteroid

253 Mathilde, a C-type asteroid about 50 km across

433 Eros, an S-type asteroid

433 Eros, an S-type asteroid

Hollywood movies have long associated the word ‘asteroid’ with the destruction of Earth, but these space rocks could prove useful for deep space exploration and a multi-billion-dollar mining industry.

The idea of mining asteroids for valuable substances has largely been pie in the sky… until now. At the start of December 2015, the Space Act was signed into law in the United States. It allows US citizens to own, transport and sell “any asteroid resource or space resource” obtained during commercial exploration.

This legislation, combined with emerging technologies, has given keen space start-ups the boost they need to rocket their ambitious plans into action. Within a decade or two, the first companies could be mining these huge space rocks.

Moving on up

US-based Planetary Resources was founded in November 2010 by X Prize Foundation entrepreneur Peter Diamandis and Chris Lewicki, former flight director for the Mars rovers, Spirit and Opportunity. The company opened the doors to its head offices and engineering facilities in Seattle in 2011. With spacecraft already in orbit, they are expecting a lot from the next decade or so. Before its end, they’ll be sending out the first commercial missions to figure out which asteroid is the best place to get started.

Competitor Deep Space Industries launched in January 2013. The team here is working to a similar timeframe. “As with all space missions, timescales are a little tricky because there are so many different moving parts - not just technically, but getting a launch and working with our international partners and so on,” says Meagan Crawford, the company’s communications manager. “But we’re definitely expecting to launch our first prospector towards an asteroid before the end of the decade - around 2019.”

Oilfields of the Solar System

In the early days, when starry-eyed entrepreneurs sat around their proverbial campfires dreaming of treasures in the near reaches of space, the talk was of precious metals.

We already know from studying meteorites (asteroids that have hit Earth) and spectroscopy observations made from afar that certain classes of asteroids are rich in industrial metals and platinum-group metals. But lately, deep-space mining plans have started to focus on a very different kind of resource that’s in greater demand than any of these riches: water.

The primary long-term goal of both Planetary Resources and Deep Space Industries is returning water to high Earth orbit. “Water is plentiful in space but it’s mostly frozen into these big floating snowballs that we call asteroids,” says Crawford. “So it’s abundant, easy to reach, and it’s typically located on the outside of a lot of the asteroids we’re looking at.”

As Nasa pushes further and further into the solar system, and as Elon Musk and SpaceX are starting to make their first trips to Mars, water is in high demand. Despite careful recycling, fresh water still has to be shipped out to the International Space Station (ISS). The cost of doing so is around $33,000 per litre.

Making water accessible in high Earth orbit would be an incredibly valuable asset. Chris Lewicki at Planetary Resources envisages this milestone as “key to the sustainable exploration of space.” And as well as providing support for human habitation, water’s constituent parts are hydrogen and oxygen. Hello, rocket fuel.

If you’re doing a long-term space mission, most of what you have to lift off the Earth is fuel. If spacecraft could refuel in a ‘filling station’ in Earth’s orbit instead of having to launch with vast quantities of fuel aboard, missions could become less expensive and longer journeys could become more feasible. An Accenture white paper reported that one 75-metre, water-rich asteroid could have fuelled all 135 Space Shuttle launches over the past 30 years.

There’s a lot of potential revenue in being able to refuel communications satellites, too. At the moment, these spacecraft have around a 20-year lifetime - not because the electronics stop working, but because they run out of fuel and have to be deorbited.

“So imagine you’re a company with a $2bn asset in space that you’re about to have to crash into the Pacific Ocean,” says Crawford. “The ability to refuel that asset is highly valuable.”

Prospecting asteroids

The first prospecting missions, taking place towards the end of this decade, will be dedicated to locating water. While telescope-based spectroscopy is already able to tell us which asteroids contain high quantities of water, these missions will assess diggability first-hand.

“Is the water in a layer on the outside? Is it frozen in the middle? What does the outside of the asteroid look like? Is it a lot of little pebbles and dust that are really easy to scoop up, or is it a solid layer of ice that’s more difficult to drill through? Knowing that information will help inform how we build our next set of harvesting missions,” explains Crawford.

Deep Space Industries’ tiny prospecting spacecraft are formed from six CubeSat units - a low-cost spacecraft skeleton made from off-the-shelf components. All the different instruments required for prospecting will be packed inside this nanosatellite, which is about as big as a briefcase. Its tiny size means that it can hitch a lift into space by squeezing into the gaps around a rocket’s payload.

The CubeSats will orbit their target asteroids, using spectral imaging and other methods to determine the size, shape, spin and composition of the asteroid.

Planetary Resources has already tested its Arkyd 3 spacecraft in mid-2015. Staying in a low Earth orbit, it successfully completed its 90-day mission to beta-test the company’s core prospecting technologies, including avionics and control systems.

‘Think about how programmers develop software: They often have an internal version, then they have a beta release, then they release 1.0 and keep incrementally improving the product and incorporating new features,’ says Lewicki. ‘Well, we have the opportunity to do that with space exploration now. We can start with the basics, figure out what works, move beyond that and iterate a number of times through a series of spacecraft.’

The next iteration, Arkyd 6, will launch in spring 2016. It will test out altitude control, power, communication and avionics systems, and the mid-wave near-infrared and hyperspectral sensors for analysing asteroid resources. This mission will test the on-board technologies using targets on Earth before being deployed to asteroids. After these testing missions, the spacecraft that will finally make the voyage to the first asteroid targets are the larger, more advanced Arkyd 200 and Arkyd 300.

Both companies are developing unique technologies in-house. Deep Space Industries has been working on new propulsion systems and battery-powered systems that are more resistant to the radiation of deep space, while 90 per cent of Planetary Resources’ next-generation spacecraft, Arkyd 6, will be created by its own tight-knit, cohesive group of engineers.

“Much in the way that a company like SpaceX is nearly completely vertically integrated - where raw materials go in and a rocket comes out - we are striving for that same level of end-to-end ownership of the design and the new ideas we can incorporate,” says Lewicki.

Harvesting the goods

Past space missions have already set the scene for future asteroid harvesting. In 2010, Japan Aerospace Exploration Agency’s Hayabusa spacecraft was the first to land on an asteroid and the first to return a sample to Earth. Hayabusa 2 is currently en route to a new target asteroid, due to make its return to Earth in 2020.

Meanwhile, Nasa’s Osiris-Rex mission is set to launch in September 2016. The spacecraft will be heading to the asteroid Bennu and returning a sample to Earth.

‘The mission will give us unprecedented experience of operating a spacecraft around and on a small asteroid for over a year,’ says project scientist Jason Dworkin. “The knowledge we gather from this experience should be necessary for any future asteroid mining operation.”

Several new technologies have been developed specifically for Osiris-Rex. The spacecraft’s Touch-and-Go Sample Acquisition Mechanism (TAGSAM) was developed by Lockheed Martin to solve the challenge of collecting a sample from a microgravity environment in the vacuum of space. It uses a burst of nitrogen gas to push surface material into the sampler’s chamber once it makes contact with the surface of Bennu. The team is also developing techniques to use natural feature tracking to help the craft navigate around the asteroid - a first for spaceflight.

Spin-off technology

The main challenge for space mining companies is achieving what governments once did with billions of dollars and thousands of people. Yet they are confident.

‘Today, one of our engineers, working on a computer with modern design software, has as much capability as an entire division of Nasa had during the Apollo programme,’ says Lewicki. ‘We always knew that in trying to do something audacious and ambitious like mining asteroids, we would create solutions that were really different. And instead of having to wait all the way until we’re mining an asteroid to make money, we can actually use those technologies to make money along the way.’

True to its word, Planetary Resources is already finding markets for Ceres, its Earth imaging system, which will eventually orbit aboard the Arkyd 100. Its mid-wave infrared sensors will offer night imaging, temperature mapping and water content measurement, while the hyperspectral (visible to near-infrared) sensors will allow spectral fingerprinting, material identification and plant phenotyping.

The team is excited about potential uses in markets such as in precision agriculture, and oil and gas exploration. The firm has formed partnerships with major engineering companies and advanced technology companies, and collaborates with Nasa and other international groups involved in the commercial development of space. It is working with 3D Systems to explore how parts of the satellite systems could be mass-manufactured on Earth and in space using 3D-printing technologies.

Deep Space Industries is also pursuing near-term revenue opportunities here on Earth and in other space missions. Crawford says the company is already working on “several contracts” to integrate some of its systems into the spacecraft of other organisations. It is partnering with Nasa and working on its first contract with the European Space Agency, partly to help build global interest in its products.

Planning for the long-term future of space exploration and development is a key part of the business. “We need to work with people who are planning satellites now, to inform them about our propulsion systems based on water so that ten years from now we can refill that propulsion system,” Crawford says.

Who knows what else we’ll discover along the way to mining asteroids? The unexpected benefits for technology advancement and basic science could be huge. This is something that excites the Osiris-Rex team. “We’ll be returning a sample of something new to Earth that scientists will be studying for generations. Children today will grow up to analyse samples and answer questions we haven’t even thought of yet,” says Dworkin.

Share |

The three types of mineable asteroid

M-type
  • Make up 10 per cent of all asteroids
  • Predominantly metallic nickel-iron
  • Highest metallic content: A single asteroid may contain more platinum than has ever been mined on Earth.
  • Especially rich in platinum-group metals (platinum, palladium, rhodium, ruthenium and osmium)
  • Platinum-group metals: used in catalytic converters, fuel cells, medical devices, jewellery
  • Platinum market price: $1600 an ounce
C-type
  • Make up 50 per cent of all asteroids
  • Predominantly clay, silicate and water
  • Water: break down to manufacture rocket fuel
  • Water: support human habitation
  • Metal silicates: 3D printing of hardware for use in space
S-type
  • Make up 40 per cent of all asteroids
  • Predominantly silicate and nickel-iron
  • Diverse range of metals such as nickel, gold, and platinum
  • Some silicates of iron and magnesium
  • Metals: space engineering and satellite construction
Asteroids

Which ones are worth targeting first?

In addition to the millions of asteroids in the Main Belt between Mars and Jupiter, scientists have identified over 12,000 near-Earth asteroids. More are being discovered all the time.

Asteroid-mining teams have narrowed down their search by looking at those that are water-rich and are the easiest to access. Planetary Resources is looking for asteroids around 300m wide for the best prospect of a worthwhile return.

Orbits and orbital periods are a major part of the calculation. Desirable asteroids pass Earth fairly closely and return frequently, so that a fruitful prospecting mission could be followed by a harvesting mission three or four years later.

The chosen asteroid needs to have a slow enough rotation rate for a spacecraft to accurately navigate and sample from it. This is affected by its shape and size: spherical is ideal. Mission planners also need to take into account the amount of energy required for a rendezvous.

“Our target list will be narrowed down further when we decide what our launch window is going to be for our first prospecting mission,” explains the firm’s PR head Meagan Crawford. “Then we’ll have an idea what the most convenient target is.”

Related forum discussions
forum comment To start a discussion topic about this article, please log in or register.    

Latest Issue

E&T cover image 1605

"We visit Barcelona, one of the smartest cities in the world, to find out what makes it so special. What does it look like and what is the future?"

E&T jobs

  • Senior Development Engineer, Electronics

    Premium job

    Helmet Integrated Systems / Gentex Corporation
    • Letchworth Garden City, Hertfordshire
    • Competitive

    We are an innovative, robust and fast growing business, whose main focus is to deliver continues improvement to existing products and offer new sol..

    • Recruiter: Helmet Integrated Systems / Gentex Corporation

    Apply for this job

  • Smart Grid Research Engineer

    Premium job

    University of Strathclyde
    • Cumbernauld, Glasgow
    • Grade: 6/7* £26,537 - £37,768*

    Work as part of a growing dynamic team on a wide range of technical projects with particular emphasis on experimental validation and testing

    • Recruiter: University of Strathclyde

    Apply for this job

  • Electrical Asset Specialist

    Affinity Water
    • Hatfield, Hertfordshire

    Responsible for updating and writing electrical engineering standards, approved codes of practice and safe systems of work

    • Recruiter: Affinity Water

    Apply for this job

  • Senior Electronics Engineer

    York Instruments
    • York, North Yorkshire

    Senior electronics engineer to work as part of a team developing an MEG imaging system; working with the engineering team and external contractors.

    • Recruiter: York Instruments

    Apply for this job

  • Manufacturing Engineer - Circuit Card Assembly

    MBDA
    • Lostock Junction
    • Competitive Salary & Benefits

    What’s the opportunity?   Manufacturing UK is an integral part of the Operations Directorate whose principal mission is to ensure that MBDA’s deliverable commitments are met...

    • Recruiter: MBDA

    Apply for this job

  • High Voltage Engineer

    Premium job

    Essex X-Ray & Medical Equipment
    • Great Dunmow, Essex

    This High Voltage Engineer will provide design leadership for high voltage cable assemblies up to one megavolt.

    • Recruiter: Essex X-Ray & Medical Equipment

    Apply for this job

  • Team Leader - Flank Arrays

    BAE Systems
    • Barrow-In-Furness, Cumbria, England
    • Negotiable

    Team Leader - Flank Arrays Would you like to work in a unique role within the construction of the Astute Class submarines? We currently have a vacancy for a Team Leader - Flank Arrays at our site in Barrow-in-Furness. As a Team Leader - Flank Arrays, you

    • Recruiter: BAE Systems

    Apply for this job

  • Electronics and Software Engineer

    Copley Scientific Ltd
    • Nottingham
    • circa £35,000 per annum + bonus

    Develop new test equipment for the pharmaceutical industry. Good opportunities to grow and develop. Successful family-owned and managed business.

    • Recruiter: Copley Scientific Ltd

    Apply for this job

  • Bridge Test Facility Manager

    BAE Systems
    • Shropshire, Telford, England
    • Negotiable

    Bridge Test Facility ManagerWe currently have a vacancy for a Bridge Test Facility Manager at our site in Telford with our Land UK business.As the Bridge Test Facility Manager, you will be part of our Test & Trials team, working closely with the Mili

    • Recruiter: BAE Systems

    Apply for this job

  • Intelligent Transport Systems Engineer - Highways Technology

    Premium job

    Mott MacDonald
    • Birmingham, West Midlands

    Our transport technology team in Birmingham is currently growing a highly skilled and customer-focused team to...

    • Recruiter: Mott MacDonald

    Apply for this job

More jobs ▶

Subscribe

Choose the way you would like to access the latest news and developments in your field.

Subscribe to E&T