vol 8, issue 1

Building Information Modelling - DNA for buildings

21 January 2013
By Bob Cervi
Share |
Building model rendered in Autodesk 3DS Max

Inner being: structural analysis conducted within the Romulus building information model

Romulus building graphic

Holistic rendering of the Romulus building using data from multiple disciplines

Interior of the Romulus building

Autodesk visualisation of the Romulus building's interior with a view to the exterior solar panels

Building Information Modelling (BIM) is the software-based method of mapping every aspect of a built structure's equivalent to DNA, from initial design and construction to refurbishments and eventual destruction.

The arrival of information management systems means that efficient, low-cost, just-in-time manufacturing processes are now standard across multiple industrial sectors.

The construction sector, however, is different: it is saddled with inefficient IT management processes. Whereas industrial production often has a single manufacturer overseeing the whole process throughout the supply chain, construction must contend with a gaggle of project groups, sub-contractors and many other stakeholders contributing to the outcome of each individually-designed project.

Finally, though, it seems that there may be change on the horizon for the construction sector, with the growing adoption of 'building information modelling' (BIM). BIM is generally defined as a digital representation of physical and functional characteristics of a facility.

BIM provides a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle - from, according to the US National BIM Standard, its earliest conception to its demolition.

Software vendors have been offering BIM products for years, but its adoption by the construction industry has been relatively slow and disjointed. This is set to change now that the UK government has properly endorsed BIM, following recommendations from an inquiry led by its chief construction adviser, Paul Morrell.

As a result, the Cabinet Office published the 'Construction Strategy' in May 2011. This states that: "Government will require fully collaborative 3D BIM (with all project and asset information, documentation and data being electronic) as a minimum by 2016".

This requirement will apply to all government-procured construction projects valued at more than £50m. The government expects BIM ultimately to cut overall construction costs by up to 20 per cent by speeding-up building projects, reducing wasteful processes and instilling smoother joint working between project partners.

BIM is claimed to be used in around 70 per cent of architecture projects. The number of construction firms practising BIM is growing rapidly, according to McGraw Hill's 2010 Smart Market Report, which says BIM is also used by almost 50 per cent of infrastructure civil engineering projects.

Gary Ross, BIM innovation associate director at infrastructure consultancy Capita Symonds, feels that BIM now offers a major opportunity for different parties involved in a construction project - architects, buildings services engineers, various services contractors, facilities managers, to name a few - to work collaboratively to accelerate processes, and reduce waste and costs.

"In the past, for example, consulting engineers had to over-engineer everything in order to obtain customer satisfaction," Ross suggests. "With BIM the project team can interrogate the models and ask if they are meeting the requirements. And an informed client can ask the question, is this job being over-engineered?"

BIM definitions

Although standard definitions of BIM's capacity and scope are theoretically well-defined and documented, it remains essentially an open methodology. Software vendors such as Autodesk, Bentley, and Graphisoft have developed their own proprietary versions of BIM. This makes a single definition of BIM difficult; however, the following extended description from Autodesk captures most of the basics:

"[BIM]'solutions create and operate on digital databases for collaboration, manage change throughout those databases so that a change to any part of the database is coordinated in all other parts, and capture and preserve information for reuse by additional industry-specific applications.

"The building industry has traditionally illustrated building projects through drawings and added information over those illustrations via notes and specifications. CAD technology automated that process, and object-oriented CAD extended the idea of adding information to illustrations and graphics into software. The results of earlier manual drafting, graphics CAD systems, and object-oriented CAD systems were identical: the creation of graphic abstractions of the intended building design.

"The principles of BIM turn this relationship around. BIM applications start with the idea of capturing and managing information about the building, and then present that information back as conventional illustrations or in any other appropriate way. A building information model captures building information at the moment of creation, stores and manages it in a building information database, and makes it available for use and reuse at every other point in the project. Drawings become a view into the database that describes the building itself."

So, in essence, BIM is an 'intelligent', model-based process that provides insight for creating and managing building and infrastructure projects faster, more economically, and with less environmental impact. 3D software enables and support this process. "A BIM model is a collection of linked data 'objects', with each object representing a constituent part of a structure, be it a window, wall or item of mechanical plant," explains Professor Tim Dwyer of the Bartlett School of Architecture, Building, Environmental Design & Planning at University College London. BIM can also include other dimensions of a construction project - for example, time factors (sometimes referred to as 4D BIM), cost factors (5D) and project lifecycle management (6D).

Dwyer stresses that BIM is also crucially about the finished building's operations (overseen by facilities managers) and its whole-lifecycle performance. "A building will typically be in use for around 75 years, and so the real benefit of BIM is the amount of resources - whether it be money spent or the size of carbon footprints - that can be saved by applying BIM from the design stage right through to the end of the building's life," he explains.

Software and hardware variants

How are software vendors responding to the challenge of creating the tools to facilitate this process? And where is this potentially revolutionary trend leaving traditional CAD/CAM providers? A range of different BIM packages are now available in this still-developing marketplace. Autodesk's range of Revit products vies with those from Bentley, such as AECOsim, while Graphisoft's offers include ArchiCAD and Nemetschek's include VectorWorks.

Other vendors such as Tekla and Solibri provide tools to enable aggregation and interoperation of different solutions. In short, there's a lot of different bits of software out there, so prospective BIM users need to do a lot of market analysis and homework when evaluating the options. In moves to further enhance their BIM offerings, some of the bigger vendors have acquired or partnered with smaller software companies. For example, in June 2012 Autodesk acquired US vendor Vela Systems, which provides cloud and mobile software for on-site construction professionals. Autodesk has since launched its new Autodesk Cloud product, voguishly called BIM 360.

Yet despite such jostling among the high-end firms it looks like there is still scope for small and medium-sized vendors to win a slice of the BIM market. The wide range of BIM objects that are needed for the components, services, and architecture that go into a new building are far from complete, and are not likely to be made available from a single proprietary BIM vendor.

Some BIM experts might argue that the development of BIM would suffer from one major vendor becoming a dominant force. To keep moving forward on BIM development, there needs to be room for a wide range of providers, including arriviste developers.

When it comes to the hardware, the picture is much simpler. According to information from vendors and users, BIM can be supported on all the main operating- and server systems (Microsoft Windows, Linux, UNIX, and Apple). BIM users with older hardware may have to upgrade the RAM and graphics cards on their hardware to accommodate the software - but BIM software vendors usually offer advice on hardware specifications and operating-system specifications needed for their products. A server may be needed for the database that is at the 'collaborative' heart of BIM - the holding and sharing of object data.

However, when it comes to sharing data-intensive BIM data on networks, while local area networks (LANs) can cope with trafficking the very big datasets that BIM projects are certain to generate, transiting that data across wide-area network connections may prove more challenging, admits Autodesk. But the company says there are solutions that can optimise WAN capabilities to make this possible.

Prohibitive costs

For smaller companies needing to acquire BIM software licences, meanwhile, the costs may seem prohibitively high - running into several thousand pounds for group licences. In addition, there are the costs of training staff to use the systems, and also to ensure that the BIM data meets required standards.

IT managers within a typical enterprise may well see the benefits of being able to import and exporting BIM data if this done using a common data format. Translating BIM objects into a format that can be openly shared between building project team members - and other stakeholders in the construction scheme - is'at the heart of truly collaborative BIMs.

Providing different professionals with software tools to create BIM models to suit each of their needs is one thing; but creating all the data in a format that can be shared and used collaboratively right across the supply chain is quite another. "Technology providers have different slants that favour their product offering," says David Jellings of the Open BIM Network, an independent, information-sharing body. "We need BIM models that are created in the same way, using shared protocols. We need a common data format for sharing BIM data."

One common data format that is gaining ground in UK construction is the Industry Foundation Classes (IFC) model, a non-proprietary, open specification developed by an international industry body, called BuildingSMART, whose members include a range of software companies. IFC enables the importing and exporting of BIM data by users of different proprietary software packages. The IFC format is in the process of becoming an official International Standard, ISO/IS 16739, according to BuildingSMART. It defines IFC as "a standard for building information models, not for drawings. It enables [professionals] to exchange information about building structures, elements, spaces and other objects in a BIM. 3D and 2D shape, properties and attributes, parameters and relationships - for example, connectivity."

IFC files use the STEP (standard for the exchange of product model data) physical file format. STEP is an ASCII file format using EXPRESS modelling language. STEP was developed to represent manufacturing products throughout their lifecycle in 3D objects. The files can be run as .ifcXML and .ifcZIP files. IFC toolkits are also available to support different languages (such as C++, C#, Java, VB), says BuildingSMART.

File exchange compatibility

As previously mentioned, one difficulty that BIM users may face is not being able to exchange the huge BIM object files between different geographically-dispersed locations. Cloud-computing platforms can be used for examining models, but they do not have the capacity for authoring models, according to Jellings. However, if users simply want to exchange files containing only changes made to models, then the transfer is manageable, he says. It is clear that IFC, which is widely used in the US and Scandinavia, is emerging as a strong candidate for providing an international data standard for BIM. Its success may well depend on the software vendors, who are criticised by some in the industry for offering tools that don't make it easy to import and export IFC using their proprietary software.

The government's 2016 deadline points to what some might regard as a 'BIM-lite' version of the concept (although the Cabinet Office labels it 'Level 2 BIM'). This version involves creating 3D CAD data and applying a proprietary BIM tool to share this information using proprietary interface tools. A number of companies in the construction say are applying BIM Level 2. At the same time iBIM (Level 3 and above) has the objective of sharing data across the whole project for the whole-lifecycle management of the building; but the starting point is to have a fully accessible and open process, with data sharing processes that can work easily and readily with IFC standards.

Whether this will be achievable with the current state of proprietary BIM products on the market - despite the interface tools provided - remains to be seen. As the Open BIM Network's David Jellings puts it, "In construction, we need a collaborative process that mirrors what manufacturing has been doing for 30 years - and that process must drive the technology, not the other way round, as it is now." BIM software vendors "need to be developing what industry needs - which is, to have fully open and accessible systems," he adds.

Some vendors contacted by E&T were not able to respond to invitations to comment on these claims, although Autodesk says that its Building Design Suite and Infrastructure Design Suite specifically address the need for interoperability.

Share |

Data communications issues: Big BIM datasets put strain on wans

The building industry's move towards the use of distributed BIM is straining its existing wide-area networks (WANs), reckons software provider Autodesk.

Data-intensive BIM files often will need to be shared between geographically-distant construction team members, for example, as well as contractors and clients; but this can put a strain on WAN infrastructures, causing delays that hobble project progress.

Firms with team members located in far-flung offices have tried various alternatives to WANs, says Autodesk - for example, by using Windows Remote Desktop to access a computer on the same LAN as the central file; or even burning big datasets to optical media (such as DVDs) and sending these via fast-delivery services between offices. But the introduction of network 'appliances' in recent years is helping to make BIM- on-WAN strategies a reality, Autodesk reckons. It gives as an example Riverbed Technology: its Steelhead products are claimed to accelerate applications over WANs by up to 100 times, and reduce WAN traffic by up to 95 per cent.

Riverbed appliances are successfully being used by companies sharing large Revit building information models, allowing disparate workers to more easily collaborate on a building project, claims Autodesk.

Of course, where a project is being managed within a relatively limited geographical area ' where, say, those organisations involved are located with a single city or large campus site, scope may exist to take advantage of metropolitan area networks (MANs), where data transiting problems can be considerably minimised ' not only because the highly-capacious cable trunks are physically closer together, but also because traffic may be aggregated across different transmission media types to achieve a similar result.

Case study: BIM in action at the Royal United Hospital

Infrastructure consultancy Capita Symonds is providing structural, civil, and mechanical and electrical engineering services for the development of a new pathology laboratory and mortuary building at the Royal United Hospital in Bath, which is due to open later in 2013.

Capita says that BIM's 3D modelling capability has enabled the team members,'including the contractor and architects, to visually 'understand' the building. BIM also allowed the team to coordinate M&E services and structural solutions for the building.

"Without BIM, it takes longer to build up the initial model. However, with the level of changes and modifications, the [BIM] model saves time and effort in terms of coordination," says Capita.

"Autodesk's proprietary BIM tool, Revit, has then been used alongside other Autodesk BIM products in order to help ensure integration between design and modelling.

"The [BIM] model's main power is that it allows the impact of any change on part of a building to be become visually apparent, which may otherwise not be obvious in 2D drawings."

Market report: BIM soon 'a necessity' for construction

According to a report by market analyst Pike Research/Navigant, the global financial crash and accompanying decline in real-estate values has created a slowdown in the architecture, engineering, and construction industries around the world, the market-watcher says.

"Many companies in these sectors have taken advantage of the market downturn to try innovative approaches to the construction process," says senior research analyst Eric Bloom. "Among these innovations is BIM software, along with the accompanying services."

Bloom adds: "Building efficiency is at the forefront of conversations everywhere regarding energy and water use, waste, and cost of operations. As BIM tools and processes are adopted by more and more firms in the industry, and the advantages of these tools and processes will begin to be realised through higher quality and more reliable deliverables, BIM adoption will become a necessity for competing effectively in the market."

According to Pike/Navigant, the leading regions of the world for BIM adoption are North America and Western Europe, followed by high growth in the Asia Pacific region, the report concludes. One of the key factors influencing adoption of BIM in these markets ' especially in North America and western Europe ' is the fact that public organisations, such as the US General Services Administration (GSA), are requiring the use of BIM tools on their building and facilities management projects.

Related forum discussions
forum comment To start a discussion topic about this article, please log in or register.    

Latest Issue

E&T cover image 1605

"We visit Barcelona, one of the smartest cities in the world, to find out what makes it so special. What does it look like and what is the future?"

E&T jobs

  • Senior Development Engineer, Electronics

    Premium job

    Helmet Integrated Systems / Gentex Corporation
    • Letchworth Garden City, Hertfordshire
    • Competitive

    We are an innovative, robust and fast growing business, whose main focus is to deliver continues improvement to existing products and offer new sol..

    • Recruiter: Helmet Integrated Systems / Gentex Corporation

    Apply for this job

  • Smart Grid Research Engineer

    Premium job

    University of Strathclyde
    • Cumbernauld, Glasgow
    • Grade: 6/7* £26,537 - £37,768*

    Work as part of a growing dynamic team on a wide range of technical projects with particular emphasis on experimental validation and testing

    • Recruiter: University of Strathclyde

    Apply for this job

  • Electrical Asset Specialist

    Affinity Water
    • Hatfield, Hertfordshire

    Responsible for updating and writing electrical engineering standards, approved codes of practice and safe systems of work

    • Recruiter: Affinity Water

    Apply for this job

  • Senior Electronics Engineer

    York Instruments
    • York, North Yorkshire

    Senior electronics engineer to work as part of a team developing an MEG imaging system; working with the engineering team and external contractors.

    • Recruiter: York Instruments

    Apply for this job

  • Manufacturing Engineer - Circuit Card Assembly

    • Lostock Junction
    • Competitive Salary & Benefits

    What’s the opportunity?   Manufacturing UK is an integral part of the Operations Directorate whose principal mission is to ensure that MBDA’s deliverable commitments are met...

    • Recruiter: MBDA

    Apply for this job

  • High Voltage Engineer

    Premium job

    Essex X-Ray & Medical Equipment
    • Great Dunmow, Essex

    This High Voltage Engineer will provide design leadership for high voltage cable assemblies up to one megavolt.

    • Recruiter: Essex X-Ray & Medical Equipment

    Apply for this job

  • Team Leader - Flank Arrays

    BAE Systems
    • Barrow-In-Furness, Cumbria, England
    • Negotiable

    Team Leader - Flank Arrays Would you like to work in a unique role within the construction of the Astute Class submarines? We currently have a vacancy for a Team Leader - Flank Arrays at our site in Barrow-in-Furness. As a Team Leader - Flank Arrays, you

    • Recruiter: BAE Systems

    Apply for this job

  • Electronics and Software Engineer

    Copley Scientific Ltd
    • Nottingham
    • circa £35,000 per annum + bonus

    Develop new test equipment for the pharmaceutical industry. Good opportunities to grow and develop. Successful family-owned and managed business.

    • Recruiter: Copley Scientific Ltd

    Apply for this job

  • Bridge Test Facility Manager

    BAE Systems
    • Shropshire, Telford, England
    • Negotiable

    Bridge Test Facility ManagerWe currently have a vacancy for a Bridge Test Facility Manager at our site in Telford with our Land UK business.As the Bridge Test Facility Manager, you will be part of our Test & Trials team, working closely with the Mili

    • Recruiter: BAE Systems

    Apply for this job

  • Intelligent Transport Systems Engineer - Highways Technology

    Premium job

    Mott MacDonald
    • Birmingham, West Midlands

    Our transport technology team in Birmingham is currently growing a highly skilled and customer-focused team to...

    • Recruiter: Mott MacDonald

    Apply for this job

More jobs ▶


Choose the way you would like to access the latest news and developments in your field.

Subscribe to E&T